Answer:
a.8m/s is my ans it may help you
work done is product of force and displacement of point of application of force
so here we have to check the product of force and displacement both
Now we will put the least to maximum work in the following order
1. -A man exerts strenuous effort in pushing a stationary wall
2. -A flea pushes a speck of dirt 1 cm
3. -A farmer pushes a 2 kg wheelbarrow 20 m
4. -A cannon launches a 3 kg cannonball a distance of 200
5. -A 2000 kg car travels 400 m down a road
6. -Space shuttle Atlantis launches from the ground into near-Earth orbit
Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.
Answer:
first blank is chemical second blank is kinetic energy
Answer:
Uh No thanks but make me brainiest!
Explanation: