Answer:
The time for the cake to cool off to room temperature is
approximately 30 minutes.
Let
=
F be the temperature and T that of the body
Explanation:
Our Tm = 70, the initial-value problem is
= <em>k</em>(T − 70), T(0) = 300
Solving the equation, we get
= <em>kdt</em>
In [T-70]= <em>kt </em>+
T = 70 +

Finding he value for
using the initial value of T (0)= 300, therefore we get:
300=70+
= 230 therefore
T= 70+ 230 
Finding the value for <em>k </em>using T (3) = 200, therefore we get
T (3) = 200
= 
<em>K </em>=
in 
= -0.19018
Therefore
T(t) = 70+230
Answer:
Less than Mercury's
Explanation:
According to third Kepler's law, the square of the planet's orbital period is proportional to the cube of the average orbital radius of the planet's orbit. The constant of proportionality depends only on the mass of the star, recall that 51 Peg has the same mass as the Sun. Since the orbital period of this planet is less than Mercury's, its average orbital radius is less than Mercury's.
Much energy as would Microraptor gui have to expend to fly with a speed of 10 m/s for 1.0 minutes is 486 J.
The first step is to find the energy that Microraptor must release to fly at 10 m/s for 1.0 minutes. The energy that Microraptor must expend to fly can be found using the relationship between Power and Energy.
P = E/t
Where:
P = power (W)
T = time (s)
Now, a minimum of 8.1 W is required to fly at 10 m/s. So, the energy expended in 1 minute (60 seconds) is
P = E/t
E = P x t
E = 8.1 x 60
E = 486 Joules
Thus, the energy that Microraptor must expend to fly at 10 m/s for 1.0 minutes is the 486 J.
Learn more about Microraptor gui here brainly.com/question/1200755
#SPJ4
Answer:
A. It is zero.
Explanation:
D Later in the day, more power is developed in lifting each box. 12 A manometer is used to indicate the pressure in a steel vessel, as shown in the diagram. What value does the liquid manometer give for the pressure in the vessel? It is zero