Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
Answer:
In physical changes no new materials are formed and the particles do not change apart from gaining or losing energy. ... Particles stay the same unless there is a chemical change whether the matter is solid, liquid or gas. Only their arrangement, energy and movement changes.
Explanation:
Hope this helps
Answer:
<h3>JAWAB SECEPATNYA pliss</h3><h3 /><h3>Anda memiliki rangkaian paralel 10 volt, dengan 2 resistor di atasnya. Berapakah tegangan pada</h3><h3>resistor pertama? Di seberang kedua?</h3><h3 /><h3>(saya akan menandai tercerdas tolong bantu)</h3>
Explanation:
Hukum Ohm
= tegangan
= kuat arus
= ketahanan
Kalau kamu mau mencari tegangan listrik, kamu gunakan rumus V = I.R. Kalau ternyata kamu perlu mencari kuat arus listrik, maka gunakan rumus I = V/R. Nah, kalau yang kamu cari adalah hambatan listrik, maka gunakan rumus R = V/I.
If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

Where
g = Gravitational acceleration
t = time
As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.
Both bodies will end with the same thermal speed.
Answer:
Explanation:
(A) True: It is true.
In junction law, the current entering at a junction is equal to teh current leaving at the junction.
(B) False: It is false.
The kirchhoff's junction law is based on the conservation of charge.
(C) True: It is true.
Energy is used in the circuit.
(D) True: It is true.
It is based on the conservation of charge.