The problem involves the conversion of potential energy to kinetic energy as the object falls from rest. Energy is conserved, so the equation used is:
PEi + KEi = PEf + KEf
Since the object is falling from rest, the initial kinetic energy is zero. Also, since the object hits the ground at its final position, the final potential energy is zero. This leaves:
PEi = KEf
mgh = 1/2 mv^2
*cancel out mass on both sides of the equation
gh = 0.5v^2
v = sqrt(2gh) = sqrt(2*9.81*4.5) = 9.40 m/s --> final ans.
There are 1,000,000 micro seconds in one second so multiple 136.8 by 1000000 and you'll get 136,800,000 Tera calculations per second.
Answer:
f1 = 12.90 Hz
Explanation:
To calculate the first harmonic frequency you use the following formula for n = 1:

( 1 )
It is necessary that the unist are in meters, then you have:
L: length of the string = 60cm = 0.6m
M: mass of the string = 0.05kg
T: tension on the string = 20 N
you replace the values of L, M and T in the expression (1) for getting f1:

Hence, the first harmonic has a frequency of 12.90 Hz
Answer:
Sound travels through solids and liquids at the same speed
Explanation:
Because sound needs a dencer object to travel fast and since both liquid and solids are closer than gas sound travles faster in them.
Hi
The answer to this question is B. Reaction