1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
labwork [276]
3 years ago
9

1. A densidade do nitrogênio nas condições normais de temperatura e pressão é igual a 1,24507 kg/m³. Qual a massa de 200 cm³ de

nitrogênio em lbm?
Physics
1 answer:
Levart [38]3 years ago
3 0

Answer:

5.49×10⁻⁴ lbm

Explanation:

Convert volume to m³.

V = (200 cm³) (1 m / 100 cm)³ = 0.0002 m³

Find mass in kg.

m = ρV

m = (1.24507 kg/m³) (0.0002 m³)

m = 0.000249 kg

Convert mass to lbm.

m = (0.000249 kg) (2.205 lbm/kg)

m = 0.000549 lbm

m = 5.49×10⁻⁴ lbm

You might be interested in
‼️‼️ Please help, urgent ‼️‼️ (check photo)
Alex787 [66]

Answer: The force constant k is 10600 kg/s^2

Step by step:

Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.

Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.

The total energy at the point h=2m is:

E_{tot}=E_{kin}+E_{pot}\\E_{tot}= \frac{1}{2}mv^2+mg\Delta h = \frac{1}{2}2000 kg 4^2\frac{m^2}{s^2}+2000kg\, 9.8\frac{m}{s^2}2m=55200\,kg\frac{m^2}{s^2}

The total energy at the point h=0m is:

E_{tot}=E_{kin}+E_{pot}+Work=0+0+ Work\\E_{tot} =F_{friction}\Delta h+\frac{1}{2}k (\Delta h)^2=17000N\cdot 2m+\frac{1}{2}k\cdot 2^2 m^2

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:

17000N\cdot 2m+\frac{1}{2}k\cdot 2^2 m^2 = 55200 \,kg\frac{m^2}{s^2}\\k = \frac{55200-34000}{2}\,\frac{kg}{s^2}=10600\frac{kg}{s^2}

5 0
3 years ago
At time t1 = 14 s, a car is located at 99, 80, 27 m and has velocity 4, 0, −3 m/s. At time t2 = 18 s, what is the position of th
Korvikt [17]

Answer:

115, 80, 15m

Explanation

t1 = 14s

t2 = 18s

change in time = 4s (18-14)

r(final) = r(initial) + (average velocity) x (change in time)

multiply the average velocity with the change in time

= (4, 0, -3) x 4 = 16, 0, -12

now we'll add this value to the initial position of the car

(99, 80, 27)m + (16, 0, -12)m = (115, 80, 15)m

8 0
4 years ago
The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
Novosadov [1.4K]

Answer:

The angle between the blue beam and the red beam in the acrylic block is  

 \theta _d  =0.19 ^o

Explanation:

From the question we are told that

     The  refractive index of the transparent acrylic plastic for blue light is  n_F  =  1.497

     The  wavelength of the blue light is F  =  486.1 nm  =  486.1 *10^{-9} \ m

    The  refractive index of the transparent acrylic plastic for red light is  n_C  =  1.488

       The  wavelength of the red light is C =  656.3 nm  = 656.3 *10^{-9} \  m

    The incidence angle is  i  =  45^o

Generally from Snell's law the angle of refraction of the blue light  in the acrylic block  is mathematically represented as

       r_F =  sin ^{-1}[\frac{sin(i) *  n_a }{n_F} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_F =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.497} ]

      r_F  =  28.18^o

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as

       r_C =  sin ^{-1}[\frac{sin(i) *  n_a }{n_C} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_C =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.488} ]

      r_F  =  28.37^o

The angle between the blue beam and the red beam in the acrylic block

     \theta _d  =  r_C  - r_F

substituting values

       \theta _d  = 28.37 -  28.18

       \theta _d  =0.19 ^o

 

4 0
3 years ago
How can you tell if something has a lot of kinetic energy? How can you tell if something only has a little bit of kinetic energy
dezoksy [38]

Based on the equation KE = 1/2(m)(v^2), Kinetic Energy can be measured based on velocity. If an object has a large velocity, it have a larger kinetic energy than if the velocity is small.

Hope this helps.

If this helped you, please vote me as brainliest!

3 0
4 years ago
What is a rubens tube
Free_Kalibri [48]

Answer:

its an antique physics apparatus for demonstrating acoustic standing waves in a tube.

6 0
3 years ago
Other questions:
  • Work is the transfer of _______ that occurs when a force makes an object move.
    5·1 answer
  • To become positively charged an átom must
    8·2 answers
  • A transformer changes the 10,000 v power line to 120 v. if the primary coil contains 750 turns, how many turns are on the second
    14·1 answer
  • Calculate the force of attraction between
    8·1 answer
  • คลื่นกลเกิดขึ้นได้อย่างไร
    13·1 answer
  • Which of the following is the discharge build up of excess electrical charge? electrical charge current electricity electron sta
    11·2 answers
  • A capacitor stores 5.6 x 10-7 C of charge when connected to a 6.0-V battery. How much charge does the capacitor store when conne
    15·1 answer
  • When light propagates from a material with a given index of refraction into a material with a smaller index of refraction, the s
    14·1 answer
  • The half-life of Cs-137 is 30.2 years. If the initial mass of the sample is 1.00 kg, how much will remain after 151 years?
    13·2 answers
  • Find the magnitude of the sum of these two vectors: B 101 m 60.0 ° 85.0 m A​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!