Answer:
Vertical component of velocity is 9.29 m/s
Explanation:
Given that,
Velocity of projection of a projectile, v = 22 m/s
It is fired at an angle of 22°
The horizontal component of velocity is v cosθ
The vertical component of velocity is v sinθ
So, vertical component is given by :



Hence, the vertical component of the velocity is 9.29 m/s
<span>The correct answer is C) a motor.
In particular, we are talking about an AC motor, which produces an alternating current. In an AC motor, a coil is immersed in a rotating magnetic field. Due to the motion of the magnetic field,the angle between the direction of the field and the surface enclosed by the coil changes. As a result, the magnetic flux through the coil changes over time (the magnetic flux is given by:
</span>

<span>
where B is the intensity of the magnetic field, A is the area enclosed by the coil and </span>

<span> is the angle between the direction of B and the perpendicular to the plane of the coil). For Faraday-Newmann-Lenz law, this change in flux induces an electromotive force (emf) into the coil, according to:
</span>

<span>
where the numerator is the variation of magnetic flux and dt is the time interval. This emf in the coil produced an electrical current in the circuit.</span>
Answer:
Answer in Explanation
Explanation:
Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>
The derivation of this formula is as follows:
Work = Force * Displacement
For gravitational potential energy:
Work = P.E
Force = Weight = mg
Displacement = Vertical Displacement = Height = h
Therefore,
P.E = mgh
The output waveforms after passing through the transformer actually depend on the type of transformer used. It could either be a step-up transformer (steps voltage up), or a step-down transformer (steps voltage down). Both transformers have an output voltage in a form of a sine wave.
Frequency = 1/T
as the 5 is reduced, frequency is increase.
as 1 whole wave travels through a point in a lesser time now