Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
The reverberation time with 800 audiences is 0.875 seconds.
<h3>
Reverberation time with 800 audience</h3>
R₁V₁ = R₂V₂
where;
- R₁ is the reverberation time with 400 audience
- R₂ is the reverberation time with 800 audience
- V₁ is initial volume
- V₂ is final volume
R₂ = R₁V₁/V₂
R₂ = (1.4 x 500) / 800
R₂ = 0.875 seconds
Thus, the reverberation time with 800 audiences is 0.875 seconds.
Learn more about reverberation time here: brainly.com/question/9278479
#SPJ1
Answer:
1.8 cm
Explanation:
= mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg
= charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C
=Potential difference through which the ion is accelerated = 215 V
= Speed of the ion
Using conservation of energy
Kinetic energy gained by ion = Electric potential energy lost

= Radius of the path followed by ion
= Magnitude of magnetic field = 0.522 T
the magnetic force on the ion provides the necessary centripetal force, hence
