Answer:
1.34 x 10^3 Pa
Explanation:
density of oil = 0.85 x 10^3 kg/m^3
g = 9.81 m/s^2
height of oil column = 16.1 cm = 0.161 m
Pressure on the surface of water = height of oil column x density of oil x g
= 0.161 x 0.85 x 10^3 x 9.81 = 1.34 x 10^3 Pa
Thus, the pressure on the surface of water is 1.34 x 10^3 Pa.
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
- The potential difference between two locations in an electric circuit is measured using a voltmeter.
- If the electricity passes through the voltmeter it shows deflection.
<h3>What is the purpose of a voltmeter?</h3>
- A voltage meter, usually referred to as a voltmeter, is a device that measures the voltage, or potential difference, between two points in an electrical or electronic circuit.
- volts is the unit of voltmeter(volts, millivolts, kilovolts)
<h3>What is the explanation for the link between current and voltage?</h3>
- Ohm's law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperatures remain constant.
<h3>What is ohm's law in circuit?</h3>
- V = IR, where V is voltage, I is current, and R is resistance, is known as Ohm's Law.
- If you know the voltage of the battery in the circuit and how much resistance is in the circuit, you may use Ohm's Law to identify properties of a circuit, such as how much current is flowing through it.
To learn more about current and voltage visit:
brainly.com/question/10254698
#SPJ4
The four strokes in order are the intake stroke, the compression stroke, the power stroke, and the exhaust stroke. Fuel is ignited during the power stroke.