Answer:
3.0 cm
Explanation:
We can solve this problem by using the mirror equation:

where
f is the focal length of the mirror
p is the distance of the object from the mirror
q is the distance of the image from the mirror
In this problem we have:
f = 1.5 cm is the focal length of the mirror (positive for a concave mirror)
p = 3.0 cm is the distance of the object from the mirror
Therefore, the distance of the image is:

And the positive sign means that the image is real.
(The second part of the exercise is just the description of the image of the first exercise).
Answer:
7.8 m/s
Explanation:
Here object is falling with a gravitational acceleration there for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation
V = U + at
V - Final velocity
U - Initial velocity
a - acceleration
t - time
V=U+at
107.8=U + 10×10
= 7.8 m/s
Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.
You multiply the high length and width and if your using centimeters then divide by 500 and then there's your answer.hoped this helped.
Answer:
60a in a circuit with a 12v battery
Explanation:
60a in a circuit with a 12v battery