The base should be 4.
Area=1/2* b *h
4*7=28/2=14.
Answer:
the 3rd one is the graph answer
Answer:
90.67% probability that John finds less than 7 golden sheets of paper
Step-by-step explanation:
For each container, there are only two possible outcomes. Either it contains a golden sheet of paper, or it does not. The probability of a container containing a golden sheet of paper is independent of other containers. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
At Munder Difflin Paper Company, the manager Mitchell Short randomly places golden sheets of paper inside of 30% of their paper containers.
This means that 
14 of these containers of paper.
This means that 
What is the probability that John finds less than 7 golden sheets of paper?

In which









90.67% probability that John finds less than 7 golden sheets of paper
Answer:
For this case we can use the probability mass function and we got:

Step-by-step explanation:
Previous concepts
A Bernoulli trial is "a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted". And this experiment is a particular case of the binomial experiment.
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Solution to the problem
Let X the random variable of interest, on this case we now that:
For this case we can use the probability mass function and we got:
