<h2>Hello!</h2>
The answer is:
The domain of the function is all the real numbers except the number 13:
Domain: (-∞,13)∪(13,∞)
<h2>Why?</h2>
This is a composite function problem. To solve it, we need to remember how to composite a function. Composing a function consists of evaluating a function into another function.
Composite function is equal to:

So, the given functions are:

Then, composing the functions, we have:

Therefore, we must remember that the domain are all those possible inputs where the function can exists, most of the functions can exists along the real numbers with no rectrictions, however, for this case, there is a restriction that must be applied to the resultant composite function.
If we evaluate "x" equal to 13, the denominator will tend to 0, and create an indetermination since there is no result in the real numbers for a real number divided by 0.
So, the domain of the function is all the real numbers except the number 13:
Domain: (-∞,13)∪(13,∞)
Have a nice day!
<u>Answer:</u>
Below!
<u>Step-by step explanation:</u>
<u>We know that:</u>
<u>Solution of Question A:</u>
<u>Percent of children: Total children/Total attendance</u>
- => 400/1500
- => 4/15
- => 0.27 (Rounded to nearest hundredth)
- => 0.27 x 100
- => 27%
<u>Hence, the percent of children is about 27%.</u>
<u>Solution of Question B:</u>
<u>Percent of women: Total women/Total attendance</u>
- => 850/1500
- => 85/150
- => 17/30
- => 17/30 x 100
- => 17/3 x 10
- => 170/3
- => 56.67%
<u>Hence, the percent of women is 56.67%.</u>
<u>Solution of Question C:</u>
- 400 + 850 + m = 1500
- => 1250 + m = 1500
- => m = 1500 - 1250
- => m = 250
<u>Percent of men: Total men/Total attendance</u>
- => 250/1500
- => 1/6
- => 0.17 (Rounded to nearest hundredth)
- => 0.17 x 100
- => 17%
<u>Hence, the percent of men is about 17%</u>
Hoped this helped.

Answer:
All of them.
Step-by-step explanation:
For rational functions, the domain is all real numbers <em>except</em> for the zeros of the denominator.
Therefore, to find the x-values that are not in the domain, we need to solve for the zeros of the denominator. Therefore, set the denominator to zero:

Zero Product Property:

Solve for the x in each of the three equations. The first one is already solved. Thus:

Thus, the values that <em>cannot</em> be in the domain of the rational function is:

Click all the options.
Answer:
k=-1827/685
Step-by-step explanation:
8/9k+9/5=-4-9/7k
8/9k-(-9/7k)=-4-9/5
8/9k+9/7k=-20/5-9/5
56/63k+81/63k=-29/5
137/63k=-29/5
k=(-29/5)/(137/63)
k=(-29/5)(63/137)
k=-1827/685
C because PEMDAS
(Please excuse my dear aunt sally)