Answer:
0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.
Step-by-step explanation:
A distribution is called uniform if each outcome has the same probability of happening.
The uniform distributon has two bounds, a and b, and the probability of finding a value between c and d is given by:

The lengths of a professor's classes has a continuous uniform distribution between 50.0 min and 52.0 min.
This means that 
If one such class is randomly selected, find the probability that the class length is between 51.5 and 51.7 min.

0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.
Answer:
c
Step-by-step explanation:
because on the chart is says 19% under burgers for teachers.
Tell me if it is right.
Answer:
124°
Step-by-step explanation:
Not the best at explaining but should be equal to 180 straight across. You have to find the missing angle. You know the right angle is 90° so you will add 34° to get 124°. 180-124 will get you 56°. Straught across you have the angle that you are trying to find which is 124° because 180-56 is 124.
Point W represents the y-intercept
\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.