There are two numbers whose sum is 64. The larger number subtracted from 4 times the smaller number gives 31. Then the numbers are 45 and 19
<h3><u>
Solution:</u></h3>
Given that, There are two numbers whose sum is 64.
Let the number be a and b in which a is bigger.
Then, a + b = 64 ------ eqn (1)
The larger number subtracted from 4 times the smaller number gives 31.
4 x b – a = 31
4b – a = 31 ----- eqn (2)
We have to find the numbers.
So, from eqn (2)
a = 4b – 31
Subatitute a in (1)
4b – 31 + b = 64
On solving we get
5b = 64 + 31
5b = 95
b = 19
So, b = 19, then eqn 1
a + 19 = 64
On simplification,
a = 64 – 19
a = 45
Hence, the two numbers are 45 and 19
Answer:
i think it's c.
Step-by-step explanation:
sorry if this is wrong
Answer:

Step-by-step explanation:
we know that

----> 
see the attached figure to better understand the problem
Triangles ABD and BCD are similar by AA Similarity Theorem
Remember that
If two figures are similar, then the ratio of its corresponding sides is proportional
so

substitute the given values



simplify
