For conservation of energy we have to:
mgH=mv²/2
Clearing
<span> v=sqrt(2gH)
Then, by definition
</span><span> F=Δp/Δt= Δ(mv)/ Δt=m Δ(v)/Δt=
</span> =m[sqrt(2gH)-0]/Δt= m[sqrt(2gH)]/ Δt
the answer is
F=m[sqrt(2gH)]/ Δt
Answer:
Frquency=3,994Hz
Explanation:
Tension =967N
Density of string (μ)=0.023g/cm
Length of the stretched spring=308cm
Fundamental frequency for nth harmonic :
Fn=n/2L(√T/μ)
Substituting the given values to find the frequency :
f1=1/2(308cm) *(0.01m/1cm)[(√967N)/(0.023g/cm)(0.1kg)/(0.1kg/m)/(1g/cm)]
=6.16m[(√967N)/0.0023kg/m)]
=3,994.20Hz
Approximately,
The frequency will be =3,994Hz
Answer:
The student is going at the bottom of the slide with a velocity of 8.66 m/s
Explanation:
Given;
mass of the student, m = 74 kg
height of the water slide, h = 11.3 m
work done, W = -5.42 × 10³ J
Apply work energy theorem;

Therefore, the student is going at the bottom of the slide with a velocity of 8.66 m/s
Answer:
True
Explanation:
The reproductive success of any species is the capability to produce their offspring per breeding lifetime or event.
Most of the species have to attract their partners by their physical capability and build up so that the mother can choose her partner in order to breed the best kind of off spring.
In the context, in case of deer, the size of the their antlers as well as behavior in herding is considered as the best chances for a successful reproduction to compete among the males and find their breeding mate.
Thus the answer is TRUE.