1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
3 years ago
8

What is the verbal expression for 2/3 * 1/2

Mathematics
1 answer:
ExtremeBDS [4]3 years ago
8 0
"Two thirds times one half"
You might be interested in
The equation of the tangent plane to the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 at the point (x0, y0, z0) can be written as xx0 a2
svetlana [45]

Answer:

The equation of tangent plane to the hyperboloid

\frac{xx_0}{a^2}+\frac{yy_0}{b^2}-\frac{zz_0}{c^2}=1.

Step-by-step explanation:

Given

The equation of ellipsoid

\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

The equation of tangent plane at the point \left(x_0,y_0,z_0\right)

\frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}=1  ( Given)

The equation of hyperboloid

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1

F(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}[c^2}

F_x=\frac{2x}{a^2},F_y=\frac{2y}{b^2},F_z=-\frac{2z}{c^2}

(F_x,F_y,F_z)(x_0,y_0,z_0)=\left(\frac{2x_0}{a^2},\frac{2y_0}{b^2},-\frac{2z_0}{c^2}\right)

The equation of tangent plane at point \left(x_0,y_0,z_0\right)

\frac{2x_0}{a^2}(x-x_0)+\frac{2y_0}{b^2}(y-y_0)-\farc{2z_0}{c^2}(z-z_0)=0

The equation of tangent plane to the hyperboloid

\frac{2xx_0}{a^2}+\frac{2yy_0}{b^2}-\frac{2zz_0}{c^2}-2\left(\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}-\frac{z_0^2}{c^2}\right)=0

The equation of tangent plane

2\left(\frac{xx_0}{a^2}+\frac{yy_0}{b^2}-\frac{zz_0}{c^2}\right)=2

Hence, the required equation of tangent plane to the hyperboloid

\frac{xx_0}{a^2}+\frac{yy_0}{b^2}-\frac{zz_0}{c^2}=0

7 0
3 years ago
Simplify this algebraic expression.
vesna_86 [32]

4/4 = 1

z-1+8 = z+7

C. z+7

6 0
3 years ago
Read 2 more answers
Determine the slope (9,2) and (3,-8)
Oxana [17]
\bf \begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
%  (a,b)
&&(~ 9 &,& 2~) 
%  (c,d)
&&(~ 3 &,& -8~)
\end{array}
\\\\\\
% slope  = m
slope =  m\implies 
\cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-8-2}{3-9}\implies \cfrac{-10}{-6}\implies \cfrac{5}{3}
7 0
3 years ago
A 10 foot ladder is leaning up against a building. If the ladder makes a 46° angle
Gnesinka [82]

Answer:

7.193 ft

Step-by-step explanation:

    |\

    |   \

    |      \

    |         \

h  |            \      10 ft

    |               \

    |                  \

    |            46°   \

    ---------------------

For the 46° angle, h is the opposite leg. The hypotenuse is 10 ft. The sine is the trig ratio that relates the opposite leg to the hypotenuse.

sin A = opp/hyp

sin 46° = h/10

h = 10 sin 46°

h = 7.193

Answer: 7.193 ft

4 0
3 years ago
Need help ASAP!!! Will mark brainliest!!! :(
scZoUnD [109]
I’m pretty sure it would be the third option, 162
7 0
3 years ago
Read 2 more answers
Other questions:
  • Determine whether the ordered pair is a solution to the linear system.
    10·1 answer
  • It took a space shuttle 8 minutes, 36 sec to launch and reach outer space. How many sec did it take?\
    6·1 answer
  • Find a such that<br><img src="https://tex.z-dn.net/?f=%20log_%7B3%7D%28x%29%20%20%3D%20%20alog_%7B5%7D%28x%29%20" id="TexFormula
    11·1 answer
  • I need help please ASAP
    10·1 answer
  • If you know the answers please let me know
    7·1 answer
  • Select the statement that correctly describes a Type I error.
    11·2 answers
  • A new cars salesperson, sold an average of $23,797 per day for the first 4 days she worked. The next 4 days she worked, she sold
    7·1 answer
  • HELP ME NOW I NEED THE ANSWER NOW<br><br>(NO LINKS FOR REAL NO LINKS FOR REAL PLEASE)​
    10·1 answer
  • In which quadrant does the point (4,4) lie?
    15·1 answer
  • Which statement describes the end behavior of the function f(x)= |x-7| -7?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!