Answer:
19.53 cm
Explanation:
The computation of the height is as follows:
Here we applied the conservation of the energy formula
As we know that
P.E of the block = P.E of the spring
m g h = ( 1 ÷ 2) k x^2
where
m = 0.15
g = 9.81
k = 420
x = 0.037
So now put the values to the above formula
(0.15) (9.81) (h) = 1 ÷2 × 420 × (0.037)^2
1.4715 (h) = 0.28749
h = 0.19537 m
= 19.53 cm
Answer:
a) v = 0.8 m / s
, b)
= 0.777 m / s
, c) ΔK = 0.93 J
Explanation:
This exercise can be solved using the concepts of moment, first let's define the system as formed by the two blocks, so that the forces during the crash have been internal and the moment is conserved.
They give us the mass of block 1 (m1 = 100kg, its kinetic energy (K = 32 J), the mass of block 2 (m2 = 3.00 kg) and that it is at rest (v₀₂ = 0)
Before crash
po = m1 vo1 + m2 vo2
po = m1 vo1
After the crash
= (m1 + m2) 
a) The initial speed of the block of m1 = 100 kg, let's use the kinetic energy
K = ½ m v²
v = √2K / m
v = √ (2 32/100)
v = 0.8 m / s
b) The final speed,
p₀ =
m1 v₀1 = (m1 + m2) 
= m1 / (m1 + m2) v₀₁
The initial velocity is calculated in the previous part v₀₁ = v = 0.8 m / s
= 100 / (3 + 100) 0.8
= 0.777 m / s
c) The change in kinetic energy
Initial K₀ =
K₀ = 32 J
Final
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.777²
= 31.07 J
ΔK =
- K₀
ΔK = 31.07 - 32
ΔK = -0.93 J
As it is a variation it could be given in absolute value
Part D
For this part s has the same initial kinetic energy K = 32 J, but it is block 2 (m2 = 3.00kg) in which it moves
d) we use kinetic energy
v = √ 2K / m2
v = √ (2 32/3)
v = 4.62 m / s
e) the final speed
v₀₂ = v = 4.62 m/s
p₀ = m2 v₀₂
m2 v₀₂ = (m1 + m2) 
= m2 / (m1 + m2) v₀₂
= 3 / (100 + 3) 4.62
= 0.135 m / s
f) variation of kinetic energy
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.135²
= 0.9286 J
ΔK = 0.9286-32
ΔK = 31.06 J
Answer:
First Kepler law states that <em><u>Each</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>describes</u></em><em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>ellipsoidal</u></em><em><u> </u></em><em><u>motion</u></em><em><u> </u></em><em><u>about</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>sun</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>its</u></em><em><u> </u></em><em><u>single</u></em><em><u> </u></em><em><u>focus</u></em><em><u>.</u></em>
Second Kepler law states that <em><u>A</u></em><em><u>n</u></em><em><u> </u></em><em><u>i</u></em><em><u>m</u></em><em><u>a</u></em><em><u>g</u></em><em><u>i</u></em><em><u>n</u></em><em><u>a</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>l</u></em><em><u>i</u></em><em><u>n</u></em><em><u>e</u></em><em><u> </u></em><em><u>j</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>i</u></em><em><u>n</u></em><em><u>g</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>Sun</u></em><em><u> </u></em><em><u>sweeps</u></em><em><u> </u></em><em><u>out</u></em><em><u> </u></em><em><u>equal</u></em><em><u> </u></em><em><u>areas</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>equal</u></em><em><u> </u></em><em><u>time</u></em><em><u> </u></em><em><u>intervals</u></em><em><u>.</u></em>
Third Kepler law states that <em><u>The</u></em><em><u> </u></em><em><u>squares</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>period</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>revolution</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>around</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>sun</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>proportional</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>cubes</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>mean</u></em><em><u> </u></em><em><u>distance</u></em><em><u> </u></em><em><u>between</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>sun</u></em><em><u>.</u></em>
Weightlessness is the condition where the body has zero gravity ( its acceleration is equal to the acceleration due to gravity )

Answer:
The cart would speed up.
Explanation:
According to Newton's 1st law, object subjected to no force, or net force 0, would have a constant speed. In our case the cart is initially at constant speed, meaning the man exerts a force that is equal to friction force. If he increases the force on the cart, the net force would no longer be 0. The cart would gain an acceleration and increases its speed.
Answer:
Explanation:
Given that,
Hot reservoir temperature is
TH = 58°C
TH = 58 + 273 = 331 K
Cold reservoir temperature
TC = -17°C
TC = -17°C + 273 = 256K
In 24minutes 590 J of heat was removed from hot reservoir
t = 24mins
t = 24 × 60 = 1440 seconds
Then,
Power is given as
P = E / t
P = 590 / 1440
P = 0.41 W
Since this removed from the hot reservoir, then, QH = 0.41W
We want to find heat expelled to the cold reservoir QX
Efficiency is given as
η = 1 - TH/TC = 1 - QH/QC
1 - TH/TC = 1 - QH/QC
TH/TC = QH/QC
Make QC subject of formula
QC = QH × TC / TH
QC = 0.41 × 256 / 331
QC = 0.317 W