Option A, current (thumb) to magnetic field (fingers)
As per the First right-hand rule,
Using right hand, if we suppose that thumb points towards the electric current
fingers curl towards the magnetic field
Answer:
the force would increase 4 times more
Explanation
more force results more mass or acceleration
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.
Answer:
B. equals zero
Explanation:
Given data
one complete cycle = heat flow
solution
we have given that when heat engine complete 1 cycle change in energy = net heat flow
that is always equal to zero
from first law of thermodynamics that
ΔU = Q + W
we know ΔU is the change internal energy in system and Q is net heat transfer in system and W is net work done in system
therefore change of internal energy during one cycle
ΔU = Ufinal - Uinitial
ΔU = Uinitial - Uinitial = 0
The answer is 10,560 Joules or 1.1*10^4
Explanation:
Step 1: Calculate
The equation for Kinetic Energy is
Kinetic energy=.5 times Mass times Velocity²
KE=.5*m*v²
so we plug in our numbers
KE=.5*600*35.2²
This works out to be 10,560 Joules or 1.1*10^4