The boat is initially at equilibrium since it seems to start off at a constant speed of 5.5 m/s. If the wind applies a force of 950 N, then it is applying an acceleration <em>a</em> of
950 N = (2300 kg) <em>a</em>
<em>a</em> = (950 N) / (2300 kg)
<em>a</em> ≈ 0.413 m/s²
Take east to be positive and west to be negative, so that the boat has an initial velocity of -5.5 m/s. Then after 11.5 s, the boat will attain a velocity of
<em>v</em> = -5.5 m/s + <em>a</em> (11.5 s)
<em>v</em> = -0.75 m/s
which means the wind slows the boat down to a velocity of 0.75 m/s westward.
Answer:

Explanation:
At thermal equilibrium we have heat given by aluminium must be equal to the heat absorbed by the water
so we will have


so we will have

so we have

so we have


You can use the impulse momentum theorem and just subtract the two momenta.
P1 - P2 = (16-1.2)(11.5e4)=1702000Ns
If you first worked out the force and integrated it over time the result is the same
Answer:
c.Beta (1 e-) is the answer.