Let's call this line y=mx+C, whereby 'm' will be its gradient and 'C' will be its constant.
If this line is parallel to the line you've just mentioned, it will have a gradient 2/3. We know this, because when we re-arrange the equation you've given us, we get...

So, at the moment, our parallel line looks like this...
y=(2/3)*x + C
However, you mentioned that this line passes through the point Q(1, -2). If this is the case, for the line (almost complete) above, when x=1, y=-2. With this information, we can figure out the constant of the line we want to find.
-2=(2/3)*(1) + C
Therefore:
C = - 2 - (2/3)
C = - 6/3 - 2/3
C = - 8/3
This means that the line you are looking for is:
y=(2/3)*x - (8/3)
Let's find out if this is truly the case with a handy graphing app... Well, it turns out that I'm correct.
Answer:
A
Step-by-step explanation:
The x- coordinate of each point ( the domain ) maps to exactly 1 unique y- coordinate ( the range).
This means the situation given represents a function → A
If you have two vectors A and B,
Dot product is a scalar quantity dealing with how much of one vector is in the same direction as the other vector, or the projection of one onto the other. You can see that from the cosine part of this form-
![A~*~B = [A][B]cos(\theta)](https://tex.z-dn.net/?f=A~%2A~B%20%3D%20%5BA%5D%5BB%5Dcos%28%5Ctheta%29)
The cross product is a vector perpendicular to both A and B. It deals with how much of one vector is perpendicular to the other vector. You can see that in the sine part of this form -