1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
15

The sum of 6 consecutive even numbers is 126.what is the fourth number in this sequence

Mathematics
2 answers:
loris [4]3 years ago
8 0
6x + 2 + 4 + 6 + 8 + 10 = 126
6x + 30 = 126
6x = 96
x = 16
Numbers are {16,18,20,*22*,24,26)
Correct answer is 22.
erastovalidia [21]3 years ago
6 0

Answer:

fourth number in this sequence is 22.

Step-by-step explanation:

Given  : The sum of 6 consecutive even numbers is 126.

To find : .what is the fourth number in this sequence.

Solution : We have given

sum of 6 consecutive even numbers is 126.

Let the 6 consecutive even numbers are = x , x +2 , x + 4 , x + 6 ,x + 8 , x + 10

According to question

Sum of all 6 numbers

x + x +2 + x + 4 + x + 6 + x + 8 + x + 10 =  126 .

On adding like terms

6x + 30 = 126 .

On subtracting both sides by 30.

6x = 126 -30 .

6x = 96.

On dividing both sides by 6

x = 16 .

Then fourth number is x + 6

16 + 6 = 22,

Therefore, fourth number in this sequence is 22.

You might be interested in
A book has 500 pages numbered 1,2,3 and so on. How many times does the digit 1 appear in the page numbers?
elena-14-01-66 [18.8K]

Answer:

200

Step-by-step explanation:

This book has 500 pages in total.

We should split up the place values.

1 - 9

One only appears once.

1

10 - 19

One appears 11 times.

1 + 11

20 - 99

One only appears 8 times.

1 + 11 + 8

Add:

1 + 11 + 8

=> 20

Since the same is for  200-299, and so on. Let us add twenty four times.

20 * 4

=> 80

Looking back to 100-199, there are 120 ones.

Add:

120 + 80

=> 200

4 0
3 years ago
$46 shoes; 2.9% tax what is the answer?
Dominik [7]
59.34 ---------------
4 0
3 years ago
Read 2 more answers
Explain how you can use a basic subtraction fact to help you solve 98-30.
solniwko [45]
You do what I’d 9-3 , 8-0 , then combined it and you will get the right answer
6 0
3 years ago
write a polynomial function of least degree with integral coefficients that has the given zeros. -(1/3), -i
inessss [21]

Answer:

f(x)=3x^3+x^2+3x+1

Step-by-step explanation:

If a real number -\frac{1}{3} is a zero of polynomial function, then

x-\left(-\dfrac{1}{3}\right)=x+\dfrac{1}{3}

is the factor of this function.

If a complex number -i is a xero of the polynomial function, then the complex number i is also a zero of this function and

x-(-i)=x+i\ \text{ and }\ x-i

are two factors of this function.

So, the function of least degree is

f(x)=\left(x+\dfrac{1}{3}\right)(x+i)(x-i)=\left(x+\dfrac{1}{3}\right)(x^2-i^2)=\\ \\ =\left(x+\dfrac{1}{3}\right)(x^2+1)=\dfrac{1}{3}(3x+1)(x^2+1)=\dfrac{1}{3}(3x^3+x^2+3x+1)

If the polynomial function must be with integer coefficients, then it has a form

f(x)=3x^3+x^2+3x+1

4 0
4 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Other questions:
  • The perimeter of a triangle
    5·1 answer
  • The radius of a sphere is increasing at a rate of 3 mm/s. how fast is the volume increasing when the diameter is 100 mm?
    10·1 answer
  • Which of the following represents the graph of f(x) = 2x + 2?
    11·1 answer
  • nathan is out rafting. he rafts 16 miles with the river current. at the end of 16 miles, he turns around and rafts the same dist
    8·2 answers
  • X/10 =13/7 rounded to the nearest tenth​
    13·1 answer
  • $300 at 8% for 4 years
    6·1 answer
  • Which is a factor of x2 – 9x + 14?<br> x – 9<br> x – 2<br> x + 5<br> x + 7
    7·2 answers
  • Based on the graph, what is the constant rate of change of the cookies made per hour?
    14·1 answer
  • Ed is on a road trip. He has already traveled 211 miles and is driving at a rate of 63 miles per hour. Which equation could be u
    14·1 answer
  • "Write 1/100 using a negative exponent other than -1. Answer: 10^-2." Why is 10^-2 the answer?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!