1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
7

Draw a model showing 15 divided by 3

Mathematics
1 answer:
kykrilka [37]3 years ago
6 0

Here is you're answer:

In order to solve this equation you must first solve the equation then make a model.

  • 15 \div 3 = 5
  • =5

Draw three circles then divide 15 between the 3 circles to equal 5.

Therefore you're answer is "5."

Hope this helps!

You might be interested in
Solve the system by substitution.
Iteru [2.4K]

Answer:

I gave you most of the answer. I'll let you check my work and find the point using the solution.

Step-by-step explanation:

The first thing we do is we divide by negative one in the first equation to get

y = -x.

-3x + 3y = -36

Plug in y = -x and get

-3x + 3(-x) = -36

= -3x - 3x = -36

This equals -6x = -36

divide both sides by -6 and you get 6. 6 is your x value

Plug 6 back in to the second equation.

-3x + 3y = -36

-3(6) + 3y = -36

-18 + 3y = -36

3y = -18

y = -6

3 0
3 years ago
Jenn will use 18 connecting cubes to make a model of a park. The model will be in the shape of a rectangle and will have a heigh
Margarita [4]
This question is basically: how many different pairs of numbers multiply up to 18?

(This is a simpler form of the question because the question is just asking how many shapes of a rectangle can Jenn create with 18 blocks)

So, the numbers that multiply up to 18 are:

1 x 18
2 x 9
3 x 6

So, the answer is: Jenn can make the model of the park in 3 different ways.
3 0
4 years ago
What is the product of 14.23 and -5
wariber [46]

Answer: -71.15


Step-by-step explanation:

Multiply the two numbers

5 0
4 years ago
Read 2 more answers
Please someone help me with the question
Yuki888 [10]

Answer:

\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}

\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Exponential Rule [Multiplying]:                                                                      \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Derivatives

Derivative Notation

eˣ Derivative:                                                                                                           \displaystyle \frac{d}{dx}[e^x] = e^x

Derivative Rule [Product Rule]:                                                                                  \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x \cdot e^x]<u />

<u />\displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x \cdot e^{2x}]<u />

<u />

<u>Step 2: Differentiate</u>

<u />\displaystyle \frac{d}{dx}[e^{2x}]<u />

  1. [Derivative] Product Rule:                                                                              \displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x]e^x + e^x\frac{d}{dx}[e^x]
  2. [Derivative] eˣ Derivative:                                                                               \displaystyle \frac{d}{dx}[e^{2x}] = e^x \cdot e^x + e^x \cdot e^x
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:                                  \displaystyle \frac{d}{dx}[e^{2x}] = e^{2x} + e^{2x}
  4. [Derivative] Combine like terms [Addition]:                                                  \displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}

\displaystyle \frac{d}{dx}[e^{3x}]

  1. [Derivative] Product Rule:                                                                              \displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x]e^{2x} + e^x\frac{d}{dx}[e^{2x}]
  2. [Derivative] eˣ Derivatives:                                                                             \displaystyle \frac{d}{dx}[e^{3x}] = e^x(e^{2x}) + e^x(2e^{2x})
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:                                  \displaystyle \frac{d}{dx}[e^{3x}] = e^{3x} + 2e^{3x}
  4. [Derivative] Combine like terms [Addition]:                                                  \displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

8 0
3 years ago
2 questions please help me
Angelina_Jolie [31]

40) -31

41 ) 19

this are the answers I think

6 0
3 years ago
Other questions:
  • 1. 12 divided by ( -3 )<br><br> 2. -7 x ( -2 )
    8·1 answer
  • Create your own factorable polynomial with a GCF. Rewrite that polynomial in two other equivalent
    14·1 answer
  • Consider the table below that represents a function.
    9·2 answers
  • Which of the following ordered pairs is not a solution of the system of inequalities? y &gt; x2 – 4x – 5 y &lt; –x2 – 5x + 6 Que
    9·1 answer
  • What is 5.207 as a fraction?
    11·2 answers
  • F(x) = 384 + 48x<br> What is the zero of f(x)
    12·2 answers
  • What factors of 56 are multiples of 2
    5·1 answer
  • Which of the following is the constant ratio of the relation shown in the table?
    14·2 answers
  • Currently 31 out of 50 American adults drink coffee every day . In a town with a population on 7,500 adults how many of these ad
    5·1 answer
  • Add 2/3 + 4/5. Write your answer as an improper fraction.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!