Antifreeze is an additive in water-based liquid to lower down the freezing point of such liquid. It is used to make use of the colligative properties of solutions specifically freezing-point depression for cold climate and boiling-point elevation to allow higher coolant temperature.
It is 20 because then you will put 30 inside of 20milimeeter and put 70 years into the other pint and put it learnt into the cup
Answer:
The pressure equilibrium constant (Kp) = (P O₂)³/(P CO₂)²(P H₂O)⁴.
Explanation:
<em>2CO₂ (g) + 4H₂O (g) → 2CH₃OH (l) + 3O₂ (g).</em>
<em></em>
The pressure equilibrium constant (Kp) = the product of the pressure of the products side components / the product of the pressure of the reactantss side components.
each one is raised to a power equal to its coefficient.
<em>∴ The pressure equilibrium constant (Kp) = (P O₂)³/(P CO₂)²(P H₂O)⁴.</em>
Missing in your question :
Ksp of(CaCO3)= 4.5 x 10 -9
Ka1 for (H2CO3) = 4.7 x 10^-7
Ka2 for (H2CO3) = 5.6 x 10 ^-11
1) equation 1 for Ksp = 4.5 x 10^-9
CaCO3(s)→ Ca +2(aq) + CO3-2(aq)
2) equation 2 for Ka1 = 4.7 x 10^-7
H2CO3 + H2O → HCO3- + H3O+
3) equation 3 for Ka2 = 5.6 x 10^-11
HCO3-(aq) + H2O(l) → CO3-2 (aq) + H3O+(aq)
so, form equation 1& 2&3 we can get the overall equation:
CaCO3(s) + H+(aq) → Ca2+(aq) + HCO3-(aq)
note: you could get the overall equation by adding equation 1 to the inverse of equation 3 as the following:
when the inverse of equation 3 is :
CO3-2 (aq) + H3O+ (aq) ↔ HCO3- (aq) + H2O(l) Ka2^-1 = 1.79 x 10^10
when we add it to equation 1
CaCO3(s) ↔ Ca2+(aq) + CO3-2(aq) Ksp = 4.5 x 10^-9
∴ the overall equation will be as we have mentioned before:
when H3O+ = H+
CaCO3(s) + H+(aq) ↔ Ca2+ (aq) + HCO3-(aq) K= 80.55
from the overall equation:
∴K = [Ca2+][HCO3-] / [H+]
when we have [Ca2+] = [HCO3-] so we can assume both = X
∴K = X^2 / [H+]
when we have the PH = 5.6 so we can get [H+]
PH = - ㏒[H+]
5.6 = -㏒[H]
∴[H] = 2.5 x 10^-6
so, by substitution on K expression:
∴ 80.55 = X^2 / (2.5 x10^-6)
∴X = 0.0142
∴[Ca2+] = X = 0.0142
Answer:
I'm pretty sure it's they have different masses. I don't know though
Explanation: