There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths.
To play a variety of roles in biochemical interactions, we require all of these diverse sorts of linkages. The tensile strength of these linkages varies. In chemistry, we consider the range of strengths between ionic and covalent bonds to be overlapping. This indicates that in water, ionic bonds usually dissociate. As a result, we shall consider these bonds from strongest to weakest in the following order:
Covalent is followed by ionic, hydrogen, and van der Waals.
To know more about 4 different types of bonds, visit;
brainly.com/question/17401243
#SPJ4
0.0760 m
do this by:
finding the moles of NaOH which will be <span>5.702 E -3 m
</span>
next find the moles of H3PO4 which will be <span>1.90 E -3 m</span><span>
calulcate </span>25 ml sample molarity = 0.07603 m, just put 0.0760<span>
</span>
Osmotic pressure is calculated by the product of the concentration in molarity, the temperature, the vant Hoff factor (3 for CaCl2 and 1 for sucrose) and R, universal gas constant. At the same temperature, the osmotic pressures of both solutions are equal.
π = CRTi
For CaCl2,
π = (1)RT(3) = 3RT
For sucrose,
π = (3)RT(1) = 3RT
Answer: There are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
Explanation:
Given:
= 2.25 L,
= 9.0 mol
= 1.85 L,
= ?
Formula used to calculate the moles of helium are as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that there are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
They all don’t, they also can have positive charges like LiOH (Lithium Hydroxide)