Calcium fluoride: CaF₂
Ca(2+) >>> Ar (argon)
F(-) >>> Ne (neon)
The yield of lithium chloride is 1.92 grams.
Option D.
<h3><u>Explanation:</u></h3>
In this reaction, we can see that 1 mole of lithium hydroxide reacts with 1 mole of potassium chloride to produce 1 mole of lithium chloride and 1 mole of potassium hydroxide.
Molecular weight of lithium hydroxide is 24.
Molecular weight of lithium chloride is 42.5.
So 24 grams of lithium hydroxide produces 42.5 grams of lithium chloride.
So, 20 grams of lithium hydroxide produces
grams =11. 29 grams of lithium chloride.
But this is when the yield is 100%.
But yield is 17%.
So the yield is 1.92 grams of lithium chloride.
Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.