A. The concentration is in mol/L
Ph= - log [H+] = -log 1.00× 10-7 = -(log 1 + log 10-7) = -( 0 + (-7log 10) = -( -7) = 7
Answer:
Sodium Bicarbonate on decomposition produces Carbon dioxide gas and Water vapors.
<span> 2 NaHCO</span>₂<span> </span> →<span> Na</span>₂<span>CO</span>₃<span> (s) </span>+ <span> CO</span>₂<span> (g) + H</span>₂<span>O (g)
</span>
Explanation:
Let suppose you burn 168 g ( 2 moles ) of NaHCO₃, a gas will produced and product is left behind. On measuring the product formed it will be almost equal to 105 g. This shows that the product is Na₂CO₃ and 1 mole of it is being produced after decomposition of sodium bicarbonate.
The number of moles of gas lost is 0.0213 mol. It can be solved with the help of Ideal gas law.
<h3>What is Ideal law ?</h3>
According to this law, "the volume of a given amount of gas is directly proportional to the number on moles of gas, directly proportional to the temperature and inversely proportional to the pressure. i.e.
PV = nRT.
Where,
- p = pressure
- V = volume (1.75 L = 1.75 x 10⁻³ m³)
- T = absolute temperature
- n = number of moles
- R = gas constant, 8.314 J*(mol-K)
Therefore, the number of moles is
n = PV / RT
State 1 :
- T₁ = (25⁰ C = 25+273 = 298 K)
- p₁ = 225 kPa = 225 x 10³ N/m²
State 2 :
- T₂ = 10 C = 283 K
- p₂ = 185 kPa = 185 x 10³ N/m²
The loss in moles of gas from state 1 to state 2 is
Δn = V/R (P₁/T₁ - P₂/T₂ )
V/R = (1.75 x 10⁻³ m³)/(8.314 (N-m)/(mol-K) = 2.1049 x 10⁻⁴ (mol-m²-K)/N
p₁/T₁ = (225 x 10³)/298 = 755.0336 N/(m²-K)
p₂/T₂ = (185 x 10³)/283 = 653.7102 N/(m²-K)
Therefore,
Δn = (2.1049 x 10⁻⁴ (mol-m²-K)/N)*(755.0336 - 653.7102 N/(m²-K))
= 0.0213 mol
Hence, The number of moles of gas lost is 0.0213 mol.
Learn more about ideal gas here ;
https://brainly.in/question/641453
#SPJ1
Answer:
solid has definite shape and volume.
liquid do not have definite shape but have definite volume.
gas do not have definite shape and definite volume.
solid have lowest compressibility out of three, liquid have more compressibility than solid but less than gases. gases have the highest compressibility out of three. Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.