Answer:
12.17 m/s²
Explanation:
The formula of period of a simple pendulum is given as,
T = 2π√(L/g)........................ Equation 1
Where T = period of the simple pendulum, L = length of the simple pendulum, g = acceleration due to gravity of the planet. π = pie
making g the subject of the equation,
g = 4π²L/T²................... Equation 2
Given: T = 1.8 s, l = 1.00 m
Constant: π = 3.14
Substitute into equation 2
g = (4×3.14²×1)/1.8²
g = 12.17 m/s²
Hence the acceleration due to gravity of the planet = 12.17 m/s²
Answer:
C. The change of internal energy of a system is the sum of work and heat spent on it.
Explanation:
The law of conservation of Energy states that energy cannot be destroyed but can only be converted or transformed from one form to another. Therefore, the sum of the initial kinetic energy and potential energy is equal to the sum of the final kinetic energy and potential energy.
Mathematically, it is given by the formula;
Ki + Ui = Kf + Uf .......equation 1
Where;
Ki and Kf are the initial and final kinetic energy respectively.
Ui and Uf are the initial and final potential energy respectively.
The law of conservation of Energy is another way to describe the law of Thermodynamics. It states that the change of internal energy of a system is the sum of work and heat spent on it.
Mathematically, it is given by the formula;
ΔU = Q − W
Where;
ΔU represents the change in internal energy of a system.
Q represents the net heat transfer in and out of the system.
W represents the sum of work (net work) done on or by the system.
Answer: Final speed
Explaination: because its final.
Answer:
Left
Explanation:
newtons is a measure of force. Since there is more newtons(force) pushing to the left, the object will move left. the 15 newtons cancel each other out, leaving only 5 newtons pushing to one side with no resistance.
The correct answer is
<span>c) very small and very large
Let's see this with a few examples:
1) if we have a very small number, such as
</span>

<span>we see that we can write it easily by using the scientific notation:
</span>

<span>2) Similarly, if we have a very large number:
</span>

<span>we see that we can write it easily by using again the scientific notation:
</span>

<span>
</span>