We use the work formula to solve for the unknown in the problem. The formula for work is expressed as the product of the net force and the distance traveled by the object. We were given both the force and the distance so we can solve work directly.
Work = 250 N x 50 m = 12500 J
Thus, the answer is C.
<span>Kinetic energy increases and potential energy decreases.
</span>
Answer:
7.04 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement on Earth = 1.2 m
a = Acceleration due to gravity on Moon = 1.67 m/s²
a = Acceleration due to gravity Earth= 9.81 m/s²
Accelration going up is considered as negetive
Initial Velocity of the ball

Assuming that the ball is thrown with the same velocity on the Moon, displacement of the ball is

The displacement of the ball on the moon is 7.04 m
Answer:
m/s^2
Explanation:
Force = mass × acceleration
kgm/s^2 = kg × acceleration
where acceleration = Force ÷ mass
= kg m/s^2 ÷ kg
:Acceleration = m/s^2
Answer:
Average speed is 60 km/hr whereas average velocity is 0 km/ hr.
Explanation:
The average speed of the boat is 60 km/ hr while on the other hand, the average velocity of the boat is 0 km/ hr because average speed is the total distance covered by the boat in total time and average velocity is the displacement covered by the boat in total time. The total distance covered by the boat is 60 km and the total time is 60 minutes which is equals to one hour so the answer is 60 km/hr whereas the displacement is the shortest distance between initial and final position which is 0 in this case so 0 divided by 60 minutes or one hour is also 0.