Answer:
a) L = 33.369 m
, b) 21
Explanation:
The analysis of the ocean depth can be performed assuming that at the bottom of the ocean there is a node and the surface must have a belly, so the expression for resonance is
λ = 4 L / n
n = 1, 3, 5, ...
The speed of the wave is
v = λ f
v = 4L / n f
L = n v / 4f
Let's write the expression for the two frequencies
L = n₁ 343/4 53.95
L = n₁ 1,589
L = n₂ 343/4 59
L = n₂ 1.4539
Let's solve the two equations
n₁ 1,589 = n₂ 1,459
n₁ / n₂ = 1.4539 / 1.589
n₁ / n2 = 0.91498
Since the two frequencies are very close the whole numbers must be of consecutive resonances, let's test what values give this value
n₁ n₂ n₁ / n₂
1 3 0.3
3 5 0.6
5 7 0.7
7 9 0.77
9 11 0.8
17 19 0.89
19 21 0.905
21 23 0.913
23 25 0.92
Therefore the relation of the nodes is n₁ = 21 and n₂ = 23
Let's calculate
L = n₁ 1,589
L = 21 1,589
L = 33.369 m
b) the number of node and nodes is equal therefore there are 21 antinode
When ignited, the gas mixture converts to water vapor and releases energy, which sustains the reaction: 241.8 kJ of energy (LHV) for every mole of H2 burned.” A mole of hydrogen weighs 2 grams. So, this is a LHV (lower heating value) of 120.9 kJ/gram of hydrogen when heat of vaporization is subtracted.
Answer: if you gogle it it will tell you the awenser
lanation:
Answer:
2.1844 m/s
Explanation:
The principle of conservation of momentum can be applied here.
when two objects interact, the total momentum remains the same provided no external forces are acting.
Consider the whole system , gun and bullet. as an isolated system, so the net momentum is constant. In particular before firing the gun, the net momentum is zero. The conservation of momentum,

assume the bullet goes to right side and the gravitational acceleration =10 
so now the weight of the rifle=

this is a negative velocity to the right side. that means the rifle recoils to the left side