Answer:
41/45
Step by Step Explanation:
Add: 8/
10
+ 1/
9
= 8 · 9/
10 · 9
+ 1 · 10/
9 · 10
= 72/
90
+ 10/
90
= 72 + 10/
90
= 82/
90
= 2 · 41/
2 · 45
= 41/
45
For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(10, 9) = 90. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 10 × 9 = 90. In the following intermediate step, cancel by a common factor of 2 gives 41/
45
.
In other words - eight tenths plus one ninth = forty-one forty-fifths.
Answer:

Explanation:
Assuming the correct expression is to find the following limit:

Use the property the limit of the quotient is the quotient of the limits:

Evaluate the numerator:

Evaluate the denominator:
- Since


Answer:
a. P(x = 0 | λ = 1.2) = 0.301
b. P(x ≥ 8 | λ = 1.2) = 0.000
c. P(x > 5 | λ = 1.2) = 0.002
Step-by-step explanation:
If the number of defects per carton is Poisson distributed, with parameter 1.2 pens/carton, we can model the probability of k defects as:

a. What is the probability of selecting a carton and finding no defective pens?
This happens for k=0, so the probability is:

b. What is the probability of finding eight or more defective pens in a carton?
This can be calculated as one minus the probablity of having 7 or less defective pens.



c. Suppose a purchaser of these pens will quit buying from the company if a carton contains more than five defective pens. What is the probability that a carton contains more than five defective pens?
We can calculate this as we did the previous question, but for k=5.

The number that will be immediately filled before 32754 is 32658
Option E is correct.
Take the augmented matrix,
![\left[\begin{array}{ccc|c}2&1&-3&-20\\1&2&1&-3\\1&-1&5&19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D2%261%26-3%26-20%5C%5C1%262%261%26-3%5C%5C1%26-1%265%2619%5Cend%7Barray%7D%5Cright%5D)
Swap the row 1 and row 2:
![\left[\begin{array}{ccc|c}1&2&1&-3\\2&1&-3&-20\\1&-1&5&19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C2%261%26-3%26-20%5C%5C1%26-1%265%2619%5Cend%7Barray%7D%5Cright%5D)
Add -2(row 1) to row 2, and -1(row 1) to row 3:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&-5&-14\\0&-3&4&22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%26-5%26-14%5C%5C0%26-3%264%2622%5Cend%7Barray%7D%5Cright%5D)
Add -1(row 2) to row 3:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&-5&-14\\0&0&9&36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%26-5%26-14%5C%5C0%260%269%2636%5Cend%7Barray%7D%5Cright%5D)
Multiply through row 3 by 1/9:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&-5&-14\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%26-5%26-14%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
Add 5(row 3) to row 2:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&0&6\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%260%266%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
Multiply through row 2 by -1/3:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&1&0&-2\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%261%260%26-2%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
Add -2(row 2) and -1(row 3) to row 1:
![\left[\begin{array}{ccc|c}1&0&0&-3\\0&1&0&-2\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%260%260%26-3%5C%5C0%261%260%26-2%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
So we have
.