Answer:
rest and motion are the relative terms because they depend on the observer's frame of reference. So if two different observers are not at rest with respect to each other, then they too get different results when they observe the motion or rest of a body
Explanation:
The sketch of the system is: two strings, 1 and 2, are attached to the ceiling and to a third string, 3.The third string holds the bag of cement.
The free body diagram of the weight with the string 3, drives to the tension T3 = weihgt => T3 = 325 N
The other free body diagram is around the joint of the three strings.
In this case, you can do the horizontal forces equilibrium equation as:
T1* cos(60) - T2*cos(40) = 0
And the vertical forces equilibrium equation:
Ti sin(60) + T2 sin(40) = T3 = 325 N
Then you have two equations with two unknown variables, T1 and T2
0.5 T1 - 0.766 T2 = 0
0.866 T1 + 0.643T2 = 325
When you solve it you get, T1 = 252.8 N and T2 = 165 N
Answer: T1 = 252.8 N, T2 = 165N, and T3 = 325N
Answer:
A.The vertical velocity is constantly increasing as the ball falls.
B.The horizontal velocity does not noticeably change as the ball falls.
G.The horizontal velocity does not affect how long it will take the ball to fall to the floor.
H.The velocity vector of the ball changes as it travels through the air.
Explanation:
As the ball is projected horizontally so here the vertical component of the velocity is zero
So the time to reach the ground is given as
so we will have
so this is the same time as the ball is dropped from H height
Since there is no force in horizontal direction so its horizontal velocity will always remain constant while vertical velocity will change at constant rate which is equal to acceleration due to gravity.
So overall the velocity vector will change due to net acceleration g
Answer:8.968 N-m
Explanation:
Given
Length of arm=0.152 m
Downward force=118 N
angle made by arm with vertical
Force can be divided into two components
It's sin component will contribute towards torque while cos component will not contibute
T=8.968 N-m
A: a person sitting on a train
Hence person could have a meal and not get food all over them.