The correct answer is b i believe
Answer:
It can be seen from the operation of pin-hole camera, formation of shadows and eclipse.
Explanation:
The phenomenon of light traveling in a straight line is known as rectilinear propagation of light.
One this evidence can be seen from the operation of pin-hole camera, which depends on rectilinear propagation of light
Also two natural effects that result from the rectilinear propagation of light are the formation of Shadows and Eclipse.
I think this is AWESOME, but I think the last sentence of your conclusion is a bit off. <span> "If someone has an allergy to oil then they can still eat cake because applesauce makes an amazing substitute for oil." I think that you should say "This recipe is great for those who cannot eat/drink oil, the applesauce is an amazing substitute for oil."
I hope I helped! -Wajiha</span>
Answer:
a) 2.87 m/s
b) 3.23 m/s
Explanation:
The avergare velocity can be found dividing the length traveled d by the total time t.
a)
For the first part we easily know the total traveled length which is:
d = 50.2 m + 50.2 m = 100.4 m
The time can be found dividing the distance by the velocity:
t1 = 50.2 m / 2.21 m/s = 22.7149 s
t2 = 50.2 m / 4.11 m/s = 12.2141 s
t = t1 +t2 = 34.9290 s
Therefore, the average velocity is:
v = d/t =2.87 m/s
b)
Here we can easily know the total time:
t = 1 min + 1.16 min = 129.6 s
Now the distance wil be found multiplying each velocity by the time it has travelled:
d1 = 2.21 m/s * 60 s = 132.6 m
d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m
d = 418.656 m
Therefore, the average velocity is:
v = d/t =3.23 m/s
Explanation:
It is given that,
Speed, v₁ = 7.7 m/s
We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :




So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.