<u>Answer:</u>
Total displacement traveled = 298
<u>Explanation:</u>
According to the given information, to actually climb for 1 cm, the caterpillar has to travel for 3 cm (2 cm upwards and 1 cm downwards).
So in order to climb straight up a one meter (100 cm) high wall, it needs to travel for 99 × 3 = 297 cm.
Then after a little it can travel up another cm to reach the top.
Therefore, the total displacement traveled = 297 + 1 = 298 cm
The motion of the ball is a composition of two motions:
- on the x (horizontal) axis, it is a uniform motion with initial velocity

- on the y (vertical) axis, it is a uniformly accelerated motion with acceleration
(a) to solve this part, we just analyze the motion on the vertical axis. The law of motion here is

By requiring y(t)=0, we find the time t at which the ball reaches the floor:


(b) for this part, we can analyze only the motion on the horizontal axis. To find how far the ball will land, we must calculate the distance covered on the x-axis, x(t), when the ball reaches the ground (so, after a time t=0.64 s):
<span>Copernicus decided this with more of an educated guess than anything. For example is when your standing right next to a plane it's huge Right? Well when it's flying it looks really small. He used the same reasoning for stars. Since it looks small it must be farther away.</span>
Answer:
180 N
Explanation:
Use Newton's second law, F = ma.
m = 4.5 kg; a = 40 m/s/s
F = (4.5)(40) = 180 N