1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
12

Dexter collected data from his classmates on whether they prefer hamburgers or hotdogs.

Mathematics
2 answers:
algol133 years ago
6 0
C) More girls than boys prefer hamburgers over hotdogs.
Vedmedyk [2.9K]3 years ago
3 0

Answer:

C) More girls than boys prefer hamburgers over hotdogs.

Step-by-step explanation:

Boy likes hamburgers:  

13

(13 + 8)

=  

13

21

= 0.6190 ≈ 62%

Girl likes hamburger:  

12

(12 + 5)

=  

12

17

= 0.7059 ≈ 71%

thus,

girls (71 of 100) > boys (62 of 100)

You might be interested in
The exterior angle of a certain regular polygon is 60°. How many sides does the polygon have?.
givi [52]
<h3>Answer:  6</h3>

Work Shown:

E = exterior angle = 60 degrees

n = number of sides of the regular polygon

n = 360/E

n = 360/60

n = 6

The regular polygon has 6 sides.

3 0
2 years ago
Work out the value of x
Andrej [43]

Answer:

Generally, the algebraic expression should be any one of the forms such as addition, subtraction, multiplication and division. To find the value of x, bring the variable to the left side and bring all the remaining values to the right side. Simplify the values to find the result.

I hope it's helpful!

8 0
3 years ago
Can anyone help me out with this?​
bogdanovich [222]

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

5 0
2 years ago
A missing data value from a set of data has a z-score of –2.1. fred already calculated the mean and standard deviation to be mu
Flauer [41]

The missing data value according to the given z-score is <u>39</u>.

We can determine how distant a data point is from the mean using its z-score. It is a crucial subject in statistics. Z-scores are a way to compare data to a population that is considered "normal." When attempting to compare someone's weight to that of the "average" person, for instance, it might be intimidating to look at a large table of data even though we know they weigh 70 kg. A z-score offers us an indication of how that person's weight compares to the mean weight of the general population. We shall discover what the z score is in this post.

The z score is a measurement of how many standard deviations a raw score is below or above the population mean. If the value is higher than the mean, it will be positive; if it is lower, it will be negative. The standard score is another name for it. It shows how far away from the mean an object is, in terms of standard deviations. The mean and population standard deviation must be known to apply a z-score. The likelihood of a score happening inside a typical normal distribution may be calculated with the use of a z score. We may also compare two scores from other samples thanks to it. A z score table is a table that contains the values of, which represent the cumulative distribution function of the normal distribution.

The equation is given by z = (x – μ)/ σ.

μ = mean

σ = standard deviation

x = test value.

In the question, z = -2.1, μ = 43, and σ = 2.

Substituting the values, we get:

-2.1 = (x - 43)/2,

or, x - 43 = -2.1*2,

or, x = -4.2 + 43,

or, x = 38.8 ≈ 39.

Thus, the missing data value according to the given z-score is <u>39</u>.

Learn more about z-scores at

brainly.com/question/10679480

#SPJ4

6 0
1 year ago
What is 9x+3x^2-4x^5+x^3+2x^4 in standard form
adoni [48]
4x^5 + 2x^4 + x^3 + 3x^2 + 9x = 0
8 0
3 years ago
Other questions:
  • Find the area of the unshaded part of the figure
    13·1 answer
  • 0.3 ÷ 42 Will someone please help me with the method on how to do this it is very hard.
    7·1 answer
  • What is the value of y?
    5·1 answer
  • A clothing store offers a shirt in 5 colors, in long or short sleeves, with a choice of three different collars. How many ways c
    5·2 answers
  • What are 1, 2 and 3
    14·2 answers
  • 20 earth pounds on the moon
    11·1 answer
  • 8(x + 5) = 16
    14·1 answer
  • If you click on this question i will give you a free website for turtoing <br> in comments
    12·1 answer
  • Suggest five questions for a questionnaire to discover what opinions people in class have about school.
    8·1 answer
  • Pls Find the value of x
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!