The precision (relative error) of the centripetal force is 1%.
<h3>Relative error</h3>
This is the error in measurement of a variable obtained in comparison with other variables.
F = mv²/r
where;
- F is centripetal force
- m is mass
- v is velocity
- r is radius
F/m = v²/r
F/m = (0.01v)²/(0.01r)
F/m = 0.01v²/r
F/m = 1%(v²/r)
Thus, the precision (relative error) of the centripetal force is 1%.
Learn more about relative error here: brainly.com/question/13370015
Answer:
A. Both spheres land at the same time.
Explanation:
The horizontal motion doesn't affect the vertical motion. Since the two spheres have the same initial vertical velocity and same initial height, they land at the same time.
Answer:
low, low
Explanation:
Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies.
Large amplitude waves contain more energy. The other is frequency, which is the number of waves that pass by each second. If more waves( or more wiggly lines) pass by, more energy is transferred each second
To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.
By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore




Here,
m = mass
g =Gravitational energy
The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

Remember the expression for which you can determine the relationship between mass, volume and density, in which

In this case the density would be that of the object, replacing

Since the displaced volume of water is 0.429 we will have to


The density of water under normal conditions is
, so


The density of the object is 
It is Real,Virtual,The Same Size, Inverted