Hydrogen and oxygen are being formed if an <span>electric current is passed through water and bubbles start forming.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:
0.0072 m³/s
Explanation:
Using Bernoulli's law
P₁ + 1/2ρv₁² = P₂ + 1/2ρv₂ since the pipe is horizontal
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
flow rate is constant
A₁v₁ = A₂v₂
A₁ = πr₁² = π (0.06/2)² = 0.0028278 m²
A₂ = πr₂² = π (0.0225)² = 0.00159 m²
v₁ = (A₂ / A₁)v₂
v₁ = (0.00159 m²/ 0.0028278 m²) v₂ = 0.562 v₂
substitute v₁ into the Bernoulli's equation
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
500 ( 1 - 0.3161 ) v₂² = (31.0 - 24 ) × 10³ Pa
341.924 v₂² = 7000
v₂² = 20.472
v₂ = √ 20.472 = 4.525 m/s
volume follow rate = 0.00159 m² × 4.525 m/s = 0.0072 m³/s
Answer:
Explanation:
The x-component is found in the magnitude of the vector times the cosine of the angle.
and, to 3 sig dig,

There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
1.) appearance
2.)texture
3.)color
4.)melting point
5.)odor