Voltage = current x resistance
since R is doubled, current must reduce by half.
So,
new current = 120/2 = 60mA
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa
The reverberation time with 800 audiences is 0.875 seconds.
<h3>
Reverberation time with 800 audience</h3>
R₁V₁ = R₂V₂
where;
- R₁ is the reverberation time with 400 audience
- R₂ is the reverberation time with 800 audience
- V₁ is initial volume
- V₂ is final volume
R₂ = R₁V₁/V₂
R₂ = (1.4 x 500) / 800
R₂ = 0.875 seconds
Thus, the reverberation time with 800 audiences is 0.875 seconds.
Learn more about reverberation time here: brainly.com/question/9278479
#SPJ1
Copper is a metal but it is not magnetic like a magnet