Answer:
The answer is below
Step-by-step explanation:
Let S denote syntax errors and L denote logic errors.
Given that P(S) = 36% = 0.36, P(L) = 47% = 0.47, P(S ∪ L) = 56% = 0.56
a) The probability a program contains both error types = P(S ∩ L)
The probability that the programs contains only syntax error = P(S ∩ L') = P(S ∪ L) - P(L) = 56% - 47% = 9%
The probability that the programs contains only logic error = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
P(S ∩ L) = P(S ∪ L) - [P(S ∩ L') + P(S' ∩ L)] =56% - (9% + 20%) = 56% - 29% = 27%
b) Probability a program contains neither error type= P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
c) The probability a program has logic errors, but not syntax errors = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
d) The probability a program either has no syntax errors or has no logic errors = P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
Answer:
{-12,0}
Step-by-step explanation:
first to solve this can collect like terms and add
X² +12x=0
and solve it by factorization method
X² +12x=0
x(x+12)=0
it means x multiplied by x = X² then x multiplied by 12 = 12x
so this means x or (x+12) equals to zero
x=0 and (x+12)=0
x+12=0
x=-12
so the solution set is {-12,0}
but can also be done by formula method
Answer:
10=7
Step-by-step explanation:
6+4=10
2x5=10
10-3=7
Hope this helps :)
We conclude that the sum of the first 8 terms of the arithmetic sequence is 17/5.
<h3>
How to get the sum of the first 8 terms?</h3>
In an arithmetic sequence, the difference between any two consecutive terms is a constant.
Here we know that:

There are 7 times the common difference between these two values, so if d is the common difference:

Then the sum of the first 8 terms is given by:

So we conclude that the sum of the first 8 terms of the arithmetic sequence is 17/5.
If you want to learn more about arithmetic sequences:
brainly.com/question/6561461
#SPJ1
Answer:.42
Step-by-step explanation: