Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds
Assemblage is an additive process where artists construct work by putting together objects and attaches them in some way. The correct option among all the options that are given in the question is the second option or option "b". This kind of artistry actually gives a three dimensional impression to the work that is done by the artist.
When sediment has built up over time layers of rock start to form, starting with sedimentry rocks, then metamorphic rocks
Answer:
the limbic system has its input and processing side (the limbic cortex, amygdala and hippocampus) and an output side (the septal nuclei and hypothalamus).
Explanation:
hope it helps
The gravitational potential energy will increase by 423.36 J
<h3>How to determine the potential energy at ground level</h3>
- Mass (m) = 72 kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Height (h) = 0 m
- Potential energy at ground level (PE₁) =?
PE = mgh
PE₁ = 72 × 9.8 × 0
PE₁ = 0 J
<h3>How to determine the potential energy at 60 cm (0.6 m)</h3>
- Mass (m) = 72 kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Height (h) = 0.6 m
- Potential energy at 60 cm (0.6 m) (PE₂) =?
PE = mgh
PE₂ = 72 × 9.8 × 0.6
PE₂= 423.36 J
<h3>How to determine the change in potential energy </h3>
- Potential energy at ground level (PE₁) = 0 J
- Potential energy at 60 cm (0.6 m) (PE₂) = 423.36 J
- Change in potential energy =?
Change in potential energy = PE₂ - PE₁
Change in potential energy = 423.36 - 0
Change in potential energy = 423.36 J
Learn more about energy:
brainly.com/question/10703928
#SPJ1