C.) a magnetic field is the correct answer…
KE = (1/2)·(mass)·(speed)²
KE = (1/2)·(50 kg)·(18 m/s)²
KE = (25 kg)·(324 m²/s²)
KE = 8,100 kg-m²/s²
KE = 8,100 Joules
Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2
About 12 hours is the time between a morning high tide and the next high tide
Explanation:
The Earth’s rotation happens between two tidal bulges
The “periodic rise and fall” of the surface water levels of the ocean is called tides. The gravitational action and interaction on the earth by the sun and the moon causes these tides. Different regions of the World experiences different patterns of tides like the diurnal, semi-diurnal etc.
When there is one high and one low tide occurring on a lunar day, then it is diurnal pattern. Semi-diurnal pattern occurs when there are two equal high and low tides on a single lunar day.
Since the Earth’s rotation happens between two tidal “bulges” on each lunar day, the coastal areas can experience two high and two low tides in every 24 hours plus 50 minutes.
Accordingly the time between two high tides would be 12 hours plus 25 minutes. Similarly, the time gap between a high to low tide would be 6 hours plus 12.5 minutes.
Based on radiometric dating of Apollo rock samples, the rocks have been detected to be about 4.5 Billion years old.
Hope this helps!