Answer:
the answer is 102- i took did it on edg
Explanation:
Here we have to get the height of the column in meter, filled with liquid benzene which exerting pressure of 0.790 atm.
The height of the column will be 0.928 m.
We know the relation between pressure and height of a liquid placed in a column is: pressure (P) = Height (h) × density of the liquid (ρ) × gravitational constant (g).
Here the pressure (P) is 0.790 atm,
or [0.790 × (1.013 × 10⁶)] dyne/cm². [As 1 atm is equivalent to 1.013 × 10⁶ dyne/cm²]
Or, 8.002ₓ10⁵ dyne/cm².
density of benzene is given 0.879 g/cm³.
And gravitational constant (g) is 980 cm/sec².
On plugging the values we get:
8.002×10⁵ = h × 0.879 × 980
Or, h = 928.931 cm
Or, h = 9.28 m (As 1 m = 100 cm)
Thus the height will be 9.28 m.
Answer:
Kinetic energy to mechanical energy, and mechanical energy to electrical energy.
Explanation:
From the Law of conservation of Energy, which state that energy can neither be created nor destroyed but can be transformed from one form to another. Energy transformation is essential in science and technology, in the process of generating electricity from dams and nuclear power plants
some of the energy transformations are the same, the energy transformations occur in both dams and nuclear power plants is Kinetic energy to mechanical energy, and mechanical energy to electrical energy. Kinectic energy is the energy in motion which means the dams is a running water and posses a Kinectic energy then it's is been convert to mechanical energy (which is the macroscopic energy) then to electrical energy by producing light.
Answer:
The answer to your question is given below
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl2 + H2
Thus, we can write out the atoms present in both the reactant and the product by doing a simple head count. The atoms present are listed below:
Element >>> Reactant >>> Product
Zn >>>>>>>> 1 >>>>>>>>>> 1
H >>>>>>>>> 2 >>>>>>>>> 2
Cl >>>>>>>>> 2 >>>>>>>>> 2