Kelvin is a temperature scale designed so that zero degrees K is defined as absolute zero (at absolute zero, a hypothetical temperature, all molecular movement stops - all actual temperatures are above absolute zero) and the size of one unit is the same as the size of one degree Celsius.
<span> </span><span>Fusion
reaction is a type of nuclear reaction where two or more nuclei combine or
collide to form an element with a higher atomic number. This happens when the
collision is in a very high speed. In this process, some of the matter of the
fusing nuclei is converted to energy.</span>
Answer:
The concentration of the analyte is determined by fitting the absorbance or transmittance obtained by spectrophotometric analysis of the unknown solution into the calibration curve.
Explanation:
In a calibration curve, the instrumental response (absorbance or transmittance), is plotted against the concentration of the analyte (the substance to be measured). The analyst is expected to prepare a series of standard solutions of the analyte within a range of solution concentrations close to the expected concentration of analyte in the unknown solution. The method of least squares may be used to determine the best fit of the line, thus, the concentration of the analyte. This method is only used for the determination of the concentration of coloured substances (spectrophotometry).
Answer:
b. 10 mL
Explanation:
First we <u>calculate the amount of H⁺ moles in the acid</u>:
- [H⁺] =

100 mL ⇒ 100 / 1000 = 0.100 L
- 1x10⁻⁵M * 0.100 L = 1x10⁻⁶ mol H⁺
In order to have a neutral solution we would need the same amount of OH⁻ moles.
We can use the pOH value of the strong base:
Then we <u>calculate the molar concentration of the OH⁻ species in the basic solution</u>:
- [OH⁻] =
= 1x10⁻⁴ M
If we use 10 mL of the basic solution the number of OH⁻ would be:
10 mL ⇒ 10 / 1000 = 0.010 L
- 1x10⁻⁴ M * 0.010 L = 1x10⁻⁶ mol OH⁻
It would be equal to the moles of H⁺ so the answer is b.