To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
69.9%
Explanation:
To find the mass percentage of iron in the compound in Fe₂O₃, we would go ahead to express the given molar mass of the iron to that of the compound.
Mass percentage =
x 100
Molar mass of Fe = 55.85g/mol
Molar mass of O = 16g/mol
Molar mass of Fe₂O₃ = 2(55.85) + 3(16) = 159.7g/mol
Mass percentage =
= 69.94% = 69.9%
learn more:
Mass percentage brainly.com/question/8170905
#learnwithBrainly
It should have 10 electrons
Answer:
An increase in the carbon dioxide concentration increases the rate at which carbon is incorporated into carbohydrate in the light-independent reaction, and so the rate of photosynthesis generally increases until limited by another factor.
Explanation: