First, we need to calculate the principal quantum number n for this electron, using the equation:
E = (-13.60 eV) / (n x n)
where E is the energy that is used to bound the electron (here, E = - 0.544 eV).
- 0.544 eV = (-13.60 eV) / (n x n)
n x n = (- 13.60 eV) / (- 0.544 eV)
n x n = 25
n = 5
The orbital radius that is equal to the radius of a hydrogen atom is calculated using the equation:
r = 0.053 nm x n x n
r = 0.053 nm x 5 x 5
r = 0.053 nm x 25
r = 1.325 nm
It takes exactly 500 seconds for the sun's radiation to reach the earth or about 8 minutes (8.333333333333... to be exact). Just divide 150 million km by 300,000 km/s. Hope this helps
Answer:
1.42 L
Explanation:
Step 1:
The following data were obtained from the question :
Molarity of KBr = 2.40 M
Mole of KBr = 3.40 moles
Volume of solution =?
Step 2:
Determination of the volume of the solution.
Molarity of solution is simply the mole of the solute per unit volume the of solution. It is given as :
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 3.4/2.4
Volume = 1.42 L
Therefore, the volume of the solution is 1.42 L
A because if you multiple it, you will be moving the decimal one time
Answer:
The correct answer is - Frequency is the number of wavelengths, which is measured in hertz.
Explanation:
Frequency is the number of waves that go through a fixed point at a particular time. Hertz is the SI unit for frequency which means that one hertz is equal to a unit number of waver passes in a unit time to a fixed point.
As the frequency of a wave increases which means the number of waves increases in the unit time, the shorter the wavelength will be.
a higher frequency wave has more energy than a lower frequency wave with the same amplitude.