Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Answer:
I screenshot and expained here
https://screenshot.best/A7QIKV.lnk
Explanation:
Answer:
B. Aluminum is a good conductor of heat
Explanation:
Physical properties are usually those that can be observed using our senses such as color, luster, freezing point, boiling point, melting point, density, hardness and odor. The Physical Properties of Aluminum are as follows: Color : Silvery-white with a bluish tint.
Answer:
It is called <em>Pnictogens</em><em>.</em>
Explanation:
This word is fro a greek word called <em>p</em><em>n</em><em>i</em><em>g</em><em>e</em><em>i</em><em>n</em><em> </em>which means <em>c</em><em>h</em><em>o</em><em>k</em><em>i</em><em>n</em><em>g</em><em> </em>due to a choking property of <em>n</em><em>i</em><em>t</em><em>r</em><em>o</em><em>g</em><em>e</em><em>n</em><em> </em><em>g</em><em>a</em><em>s</em><em> </em>when opposed to air with (oxygen).
Answer:
6 moles of Cl2
Explanation:
First, the equation has to be balanced, which makes it 4 FeCl3 + 3 O2 --> 2 Fe2O3 + 6 Cl2
Using this information, we can see that one mole of O2 will not be present in the reaction. Since four moles of FeCl3 are needed to react in the equation, which would produce six moles of Cl2, and only four moles of FeCl3 are present, six moles of Cl2 would be produced.