So in your question that ask to calculate the Ph result of the resulting solution if 26 ml of 0.260 M HCI(aq) is added to the following substance. The the result are the following:
A. The result is pH= 14-pOH
B. There are 10ml of 0.26m HCL excees in this reaction so the answer is log(H)+
<span>Determine the root-mean-square sped of CO2 molecules that have an average Kinetic Energy of 4.21x10^-21 J per molecule. Write your answer to 3 sig figs.
</span><span>
E = 1/2 m v^2
If you substitute into this formula, you will get out the root-mean-square speed.
If energy is Joules, the mass should be in kg, and the speed will be in m/s.
1 mol of CO2 is 44.0 g, or 4.40 x 10^1 g or 4.40 x 10^-2 kg.
If you divide this by Avagadro's constant, you will get the average mass of a CO2 molecule.
4.40 x 10^-2 kg / 6.02 x 10^23 = 7.31 x 10^-26 kg
So, if E = 1/2 mv^2
</span>v^2 = 2E/m = 2 (4.21x10^-21 J)/7.31 x 10^-26 kg = 115184.68
Take the square root of that, and you get the answer 339 m/s.
Answer:
56.2
Explanation:
<u>mark</u><u> </u><u>me as</u><u> </u><u>BRAINLIEST</u><u> </u>
<u>follow me</u><u> </u>
<u>carry on</u><u> </u><u>learning</u><u> </u>
<u>100</u><u> </u><u>%</u><u>sure</u><u> </u>
<span>Well if you're looking for grams, all you need to do is cancel out units.
(ml)(g/ml)=g because the ml cancels out.
Thus, multiply: (85.32ml)(1.03g/ml)=...I'll let you solve this. :)
Good luck! Hope that helped. When in doubt, look at the units.</span>