<span>According to the question-
1 mol C3H8O = 60.096 g C3H8O
2 mol C3H8O = 9 mol O2
1 mol O2 = 31.998 g O2
[(3.00 g C3H8O)/1][(1 mol C3H8O)/(60.096)][(9 mol O2)/(2 mol C3H8O)][(32.998 g O2)/(1 mol O2)] = 7.1880435 g O2
Since 7.1880435 g of O2 is needed, and 7.38 g of O2 is available, 0.199565 g of O2 will be left over and oxygen is present in excess.
Next, we need to convert 0.199565 g of O2 into moles of O2:
[(0.199565 g O2)/1][(1 mol O2)/(31.998 g O2)] = 0.005999 mol O2, or 0.006 mol O2</span>
First, balance the carbon and hydrogen atoms on both sides of the equation.Then, balance the oxygen atoms. ...Finally, balance anything that has become unbalanced.
Answer:
The amount of heat required to vaporize 2.58 kg of water at its boiling point is 5,830.8 kJ.
Explanation:
A substance undergoes a change in temperature when it absorbs or gives up heat to the environment around it. However, when a substance changes phase it absorbs or gives up heat without causing a change in temperature. The heat Q that is necessary for a mass m of a certain substance to change phase is equal to:
Q = m*L
where L is called the latent heat of the substance.
In this case:
- m=2.58 kg
- The heat of vaporization of water is L=2260*10³ J/kg
Replacing:
Q= 2.58 kg* 2260*10³ J/kg
Q= 5,830,800 J = 5,830.8 kJ (Being 1,000 J= 1 kJ)
<u><em>The amount of heat required to vaporize 2.58 kg of water at its boiling point is 5,830.8 kJ.</em></u>
Answer:
2-to produce copies of a DNA molecule
Answer:they are chemically bound together and they retain their individual physical and chemical properties
Explanation: