To solve this problem it is necessary to apply the concepts related to momentum, momentum and Force. Mathematically the Impulse can be described as

Where,
F= Force
t= time
At the same time the moment can be described as a function of mass and velocity, that is

Where,
m = mass
v = Velocity
From equilibrium the impulse is equal to the momentum, therefore


PART A) Since the body ends at rest, we have the final speed is zero, so the momentum would be



Therefore the magnitude of the person's impulse is 1125Kg.m/s
PART B) From the equation obtained previously we have that the Force would be:



Therefore the magnitude of the average force the airbag exerts on the person is 45000N
Answer:
(A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.
Explanation:
Given that,
Voltage = 8.2 V
Inductor = 38 mH
Resistance = 150 Ω
Time t = 0.110 ms
The battery has negligible internal resistance, so that the total resistance in the circuit is 150 ohms. Then use this equation for current at time t in terms of inductance
We need to calculate the current
Using formula of current

Put the value into the formula



(B). We need to calculate the store energy in the inductor
Using formula of energy

Put the value into the formula


{tex]E=7.04\ \mu J[/tex]
Hence, (A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.
Answer:
Option B, Fix the piston in place so the volume of the pas remains constant
Explanation:
As we know

The effect on variable due to another variable can be studied by keeping the third variable constant.
Hence, in order the study the variation of temperature with pressure or vice versa, the volume needs to fixed at a certain value.
Hence, option B is correct
Answer:
evaporation to condensation to precipitation.