There are warnings about using your cell phone while pumping gas because cell phone batteries can explode.
<h3>What is pumping gas?</h3>
When the vehicle is not having enough fuel to drive more miles, it needs to be fueled by petrol, diesel or natural gas. This is called pumping gas.
According to the rules of National Fire Protection Association, No one is allowed to use any type of electronic items while pumping gas. So, the cell phone is not allowed.
Phones develop static charge. It is believed that cell phone batteries can explode while pumping gas. It would be a real danger.
Thus, there are warnings about using your cell phone while pumping gas because cell phone batteries can explode.
Learn more about pumping gas.
brainly.com/question/23210418
#SPJ4
The distance D where the object comes to rest is 1.08.m.
<h3>What is the distance?</h3>
- The separation of one thing from another in space; the distance or separation in space between two objects, points, lines, etc.; remoteness. The distance of seven miles cannot be accomplished in one hour of walking.
- Learn how to use the Pythagorean theorem to get the separation between two points using the distance formula. The Pythagorean theorem can be rewritten as d==(((x 2-x 1)2+(y 2-y 1)2)
- The distance between any two places is the length of the line segment separating them. By measuring the length of the line segment that connects the two points in coordinate geometry, the distance between them may be calculated.
(c) the distance D where the object comes to rest.
ΔKE ⇒ -0.25*1*9.8*D = 0-1/2*1*
⇒
⇒1.08.m
To learn more about distance, refer to:
brainly.com/question/4998732
#SPJ4
Answer:

Explanation:
The resistance of a wire is given by:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
1) The first wire has length L and cross-sectional area A. So, its resistance is:

2) The second wire has length twice the first one: 2L, and same thickness, A. So its resistance is

3) The third wire has length L (as the first one), but twice cross sectional area, 2A. So, its resistance is

By comparing the three expressions, we find

So, this is the ranking of the wire from most current (least resistance) to least current (most resistance).
Given:
h = 600 m, the height of descent
t = 5 min = 5*60 = 300 s, the time of descent.
Let a = the acceleration of descent., m/s².
Let u = initial velocity of descent, m/s.
Let t = time of descent, s.
The final velocity is v = 0 m/s because the helicopter comes to rest on the ground.
Note that u, v, and a are measured as positive upward.
Then
u + at = v
(u m/s) + (a m/s²)*(t s) = 0
u = - at
u = - 300a (1)
Also,
u*t + (1/2)at² = -h
(um/s)*(t s) + (1/2)(a m/s²)*(t s)² = 600
ut + (1/2)at² = 600 (2)
From (1), obtain
-300a +(1/2)(a)(90000) = -600
44700a = -600
a = - 1.3423 x 10⁻² m/s²
From (1), obtain
u = - 300*(-1.3423 x 10⁻²) = 4.03 m/s
Answer:
The acceleration is 0.0134 m/s² downward.
The initial velocity is 4.0 m/s upward.