d = distance between the two point charges = 60 cm = 0.60 m
r = distance of the location of point "a" where the electric field is zero from charge
between the two charges.
= magnitude of charge on one charge
= magnitude of charge on other charge
= 3 
= Electric field by charge
at point "a"
= Electric field by charge
at point "a"
Electric field by charge
at point "a" is given as
= k
/r²
Electric field by charge
at point "a" is given as
= k
/(d-r)²
For the electric field to be zero at point "a"
=
k
/(d-r)² = k
/r²
/(d-r)² = 3
/r²
1/(0.60 - r)² = 3 /r²
r = 0.38 m
r = 38 cm
Answer:
Within a horizontal flow fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Explanation:
Kinetic Energy<span>. </span>Energy<span> is transferred from one object to another when a reaction takes place. </span>Energy<span> comes in many forms and can be transferred from one object to another as heat, light, or motion, to name a few. ... This </span>energy<span> would be in the form of motion, with the person lifting the blue ball to a higher level.</span>
It’s A, it’s fifty two degrees above the celestial equator, you can also look up the same question and see if any of them match