Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
Answer:
can be found in many waters, but the Antarctic ecosystem is where the population is highly condensed.
Explanation:
Answer:
Explanation:
Rx = -28.2 units
Ry = 19.6 units
magnitude of R = √ [( - 28.2 )² + ( 19.6 ) ]
= √ ( 795.24 + 384.16 )
= 34.34 units
If θ be the angle measured counterclockwise from the +x-direction
Tanθ = 19.6 / - 28.2 = -0.695
θ = 180 - 34.8
= 145.2° .
Answer:
Your answer is: K.E = 8.3 J
Explanation:
If the height (h) = 169.2 meters (m) and the mass (m) is 0.005 kilograms (kg) the total energy will be kinetic energy which is equal to the potential energy.
K.E = P.E and also P.E equals to mgh
Then you substitute all the parameters into the formula ↓
P.E = 0.005 × 9.81 × 169.2
P.E = 8.2908 J
So your answer is 8.2908 but if you round it is K.E = 8.3