Answer:
1) a = -1 m/s²
2) v = 12 m/s
Explanation:
Given,
The initial velocity of the object, u = 15 m/s
The final velocity of the object, v = 10 m/s
The time taken by the object to travel is, t = 5 s
Using the first equation of motion
<em>v = u + at</em>
a = (v - u) / t
Substituting the values
a = (10 - 15) / 5
= -1 m/s²
The negative sign indicates the body is decelerating
The acceleration of the object is, a = -1 m/s²
The speed of the object after 2 seconds
From the above equations of motion
v = 15 + (-1) 2
= 12 m/s
Hence, the speed of the object after 2 seconds is, v = 12 m/s
a)
, 
The work done by the student in each trial is equal to the gravitational potential energy gained by the student:

where
m = 68 kg is the mass of the student
g = 9.8 m/s^2 is the acceleration of gravity
is the gain in height of the student
For the first student,
, so the work done is

The second student runs up to the same height (3.5 m), so the work done by the second student is the same:

2)
, 
The power exerted by each student is given by

where
W is the work done
t is the time taken
For the first student,
and
, so the power exerted is

For the second student,
and
, so the power exerted is

Answer:
Parallel
Explanation:
An electric charge in a magnetic field will experience no force if the charge is moving parallel to the field.
Answer:
B. get smaller
Explanation:
The parallax angle of a star measured with respect to the Earth is inversely proportional to the distance of the star from the Earth:

where
is the parallax angle, measured in arcsec
d is the distance between the star and the Earth, measured in parsec
Therefore, if the star Alpha Centauri is moved farther from Earth, then d increases, and therefore the parallax angle will get smaller.